CRISPR: An Elixir for Autoimmune Diseases? A Systematic Review
Abstract
Genetic studies have linked the gene polymorphisms and autoimmune disorders. In response, the Clustered Regularly Interspaced Short Palindromic Repeats and its associated protein 9 (CRISPR-Cas9) has become a promising tool for treating these diseases. The broad acceptance of CRISPR, due to its simplicity, precision, and adaptability, has significantly rushed scientific research, and fostered radical discoveries in both model species and human cells. CRISPR-Cas9 offers versatile applications for rare diseases like urea cycle disorders or hepatorenal tyrosinemia and in reducing cholesterol by targeting Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9). It can also immunomodulate the autoimmune diseases by specifically targeting genes associated with these conditions. This targeted approach holds the potential to modify the immune response, leading to the potential alleviation of disease progression. Our review underscores the ongoing exploration of CRISPR-Cas9 therapy for autoimmune disorders, emphasizing its transformative possibilities in this field. We specifically highlight the potential target genes for CRISPR-Cas9 immunomodulation in prevalent autoimmune disorders such as systemic lupus erythematosus, multiple sclerosis, insulin-dependent diabetes mellitus, psoriasis, type 1 coeliac disease, and rheumatoid arthritis. The future holds immense promise as the remarkable advances in CRISPR-Cas9 therapies pave the way for a revolutionary transformation in the treatment of various autoimmune disorders.
REFERENCES
- Abdelhafiz D, Baker T, Glascow DA, Abdelhafiz Ah (2023). Biomarkers for the diagnosis and treatment of rheumatoid arthritis–a systematic review. Postgrad. Med. 135: 214-223.
- Akram F, Sahreen S, Aamir F, Haq Ikram Ul, Malik K, Imtiaz M, Naseem W, Nasir N, Waheed H, Mariam (2023). An insight into modern targeted genome-editing technologies with a special focus on CRISPR/Cas9 and its applications. Mol. Biotechnol. 65: 227-242.
- Alduraibi FK, Sullivan KA, Chatham W, Hsu Hui-C, Mountz JD (2023). Interrelation of T cell cytokines and autoantibodies in systemic lupus erythematosus: A cross-sectional study. Clin. Immunol. 247: 109239.
- Arakawa A, Reeves E, Vollmer S, Arakaw Y, He M, Galinski A, Stöhr J, Dornmair K, James E, Prinz JC (2021). ERAP1 controls the autoimmune response against melanocytes in psoriasis by generating the melanocyte autoantigen and regulating its amount for HLA-C* 06: 02 presentation. J. Immunol. 207: 2235-2244.
- Balchin C, Tan AL, Wilson OJ, McKenna J, Stavropoulos K, Antonios (2023). The role of microRNAs in regulating inflammation and exercise-induced adaptations in rheumatoid arthritis. Rheumatol. Adv. Pract. 7: rkac110.
- Bao S, Huang H, Jin Y, Ding F, Yang Z, Xu X, Liu C, Lu J, Jin Y (2023). Autoantibody-based subgroups and longitudinal seroconversion in juvenile-onset systemic lupus erythematosus. Lupus Sci. Med. 10: e000834.
- Bauer A, Habior A, Gawel D (2022). Diagnostic and clinical value of specific autoantibodies against Kelch-like 12 peptide and nuclear envelope proteins in patients with primary biliary cholangitis. Biomedicines. 10: 801.
- Bharathkumar N, Sunil A, Meera P, Aksah S, Kannan M, Saravanan K, Anand T (2022). CRISPR/Cas-Based modifications for therapeutic applications: A review. Mol. Biotechnol. 64: 355-372.
- Bianco M, Allegra E (2021). Diagnosis of EGPA syndrome in a patient With chronic polypoid rhinosinusitis presenting as Loeffler Syndrome. ENT J. 100: NP216-NP217.
- Brokowski C, Adli M (2019). CRISPR ethics: Moral considerations for applications of a powerful tool. J. Mol. Biol. 431: 88-101.
- Burmistrz M, Krakowski K, Krawczyk-Balska A (2020). RNA-targeting CRISPR–Cas systems and their applications. Int. J. Mol. Sci. 21: 1122.
- Chakrabarti A, Henser-Brownhill T, Monserrat J, Poetsch A, Luscombe N, Scaffidi P (2019). Target-specific precision of CRISPR-mediated genome editing. Mol. cell. 73: 699-713. e696.
- Chaudhuri A, Halder K, Datta A (2022). Classification of CRISPR/Cas system and its application in tomato breeding. Theor. Appl. Genet. 135: 367-387.
- Chavez M, Chen X, Finn P, Qi L (2023). Advances in CRISPR therapeutics. Nat. Rev. Nephrol. 19: 9-22.
- Choi M, FitzPatrick R, Buhler K, Mahler M, Fritzler M (2020). A review and meta-analysis of anti-ribosomal P autoantibodies in systemic lupus erythematosus. Autoimmun. Rev. 19: 102463.
- Choi S-E, Park D-J, Kang J-H, Lee S-S (2023). Significance of co-positivity for anti-dsDNA,-nucleosome, and-histone antibodies in patients with lupus nephritis. Ann. Med. 55: 1009-1017.
- Dao F-Y, Liu M-L, Su W, Lv H, Zhang Z-Y, Lin H, Liu L (2023). AcrPred: A hybrid optimization with enumerated machine learning algorithm to predict anti-CRISPR proteins. Int. J. Biol. Macromol. 228: 706-714.
- Doudna J (2020). The promise and challenge of therapeutic genome editing. Nature. 578: 229-236.
- Duca L, Roman N, Teodorescu A, Ifteni P (2023). Association between inflammation and thrombotic pathway link with pathogenesis of depression and anxiety in SLE patients. Biomolecules. 13: 567.
- Eiza N, Sabag A, Kessler O, Neufeld G, Vadasz Z (2023). CD72-semaphorin3A axis: A new regulatory pathway in systemic lupus erythematosus. J. Autoimmun. 134: 102960.
- Evans C, Ghivizzani S, Robbins P (2023). Osteoarthritis gene therapy in 2022. Curr. Opin. Rheumatol. 35: 37-43.
- Feng F, Tang F, Gao Y, Zhu D, Li T, Yang S, Yao Y, Huang Y, Liu J (2023). GenomicKB: A knowledge graph for the human genome. Nucleic Acids Res. 51: D950-D956.
- Fogleman S, Santana C, Bishop C, Miller A, Capco D (2016). CRISPR/Cas9 and mitochondrial gene replacement therapy: promising techniques and ethical considerations. Am. J. Stem Cells. 5: 39-52.
- Fuziwara C, de Mello D, Kimura E (2022). Gene editing with CRISPR/Cas methodology and thyroid cancer: Where are we? Cancers. 14: 844.
- Galarza-Muñoz G, Briggs F, Evsyukova I, Schott-Lerner G K, Edward M, Tinashe W, Liuyang B, Laura W, Steven G, Georgia D (2017). Human epistatic interaction controls IL7R splicing and increases multiple sclerosis risk. Cell. 169: 72-84. e13.
- Gomez-Pinedo U, Matías-Guiu J, Torre-Fuentes L, Montero-Escribano P, Hernández-Lorenzo L, Pytel V, Maietta P, Alvarez S, Sanclemente-Alamán I, Moreno-Jimenez L (2022). Variant rs4149584 (R92Q) of the TNFRSF1A gene in patients with familial multiple sclerosis. Neurología (English Edition). S2173-5808: 00087-00086.
- Gostimskaya I (2022). CRISPR–Cas9: A history of its discovery and ethical considerations of its use in genome editing. Biochemistry (Moscow). 87: 777-788.
- Guo N, Liu J-B, Li W, Ma Y-S, Fu D (2022). The power and the promise of CRISPR/Cas9 genome editing for clinical application with gene therapy. J. Adv. Res. 40: 135-152.
- Harris V, Koelsch K, Kurien B, Harley I, Wren J, Harley J, Scofield R (2019). Characterization of cxorf21 provides molecular insight into female-bias immune response in SLE pathogenesis. Front. Immunol. 10: 2160.
- Herrán M, Adler B, Perin J, Morales W, Pimentel M, McMahan Z (2023). Anti‐vinculin antibodies in systemic sclerosis: associations with slow gastric transit and extra‐intestinal clinical phenotype. Arthritis. Care. Res. 75: 2166-2173.
- Hillary V, Ceasar S (2023). A review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering. Mol. Biotechnol. 65: 311-325.
- Iacomino N, Scandiffio L, Conforti F, Salvi E, Tarasco M, Bortone F, Marcuzzo S, Simoncini O, Andreetta F, Pistillo D (2023). Muscle and muscle-like autoantigen expression in myasthenia gravis thymus: Possible molecular hint for autosensitization. Biomedicines. 11: 732.
- Kanafi M, Tavallaei M (2022). Overview of advances in CRISPR/deadCas9 technology and its applications in human diseases. Gene. 830: 146518.
- Karimian A, Azizian K, Parsian H, Rafieian S, Shafiei‐Irannejad V, Kheyrollah M, Yousefi M, Majidinia M, Yousefi B (2019). CRISPR/Cas9 technology as a potent molecular tool for gene therapy. J. Cell Physiol. 234: 12267-12277.
- Katti A, Diaz B, Caragine C, Sanjana N, Dow L (2022). CRISPR in cancer biology and therapy. Nat. Rev. Cancer. 22: 259-279.
- Khan Z, Ali Z, Khan A, Sattar T, Zeshan A, Saboor T, Binyamin B (2022). History and classification of CRISPR/Cas system. in: Ahmad, A., Khan, S.H., Khan, Z. [Ed.]. The CRISPR/Cas Tool Kit for Genome Editing. Springer, Singapore.
- Khanzadi M, Khan A (2020). CRISPR/Cas9: Nature's gift to prokaryotes and an auspicious tool in genome editing. J. Basic Microbiol. 60: 91-102.
- Khurana A, Sayed N, Singh V, Khurana I, Allawadhi P, Rawat P, Navik U, Pasumarthi S, Bharani K, Weiskirchen R (2022). A comprehensive overview of CRISPR/Cas 9 technology and application thereof in drug discovery. J. Cell Biochem. 123: 1674-1698.
- Koike H, Katsuno M (2021). Macrophages and autoantibodies in demyelinating diseases. Cells. 10: 844.
- Krovi S, Kuchroo V (2022). Activation pathways that drive CD4+ T cells to break tolerance in autoimmune diseases. Immunol. Rev. 307: 161-190.
- Kumar D, Sahoo S, Chauss D, Kazemian M, Afzali B (2023). Non-coding RNAs in immunoregulation and autoimmunity: Technological advances and critical limitations. J. Autoimmun. 134: 102982.
- Lee M, Shin J, Yang J, Lee K, Cha D, Hong J, Park Y, Choi E, Tizaoui K, Koyanagi A (2022). Genome editing using CRISPR-Cas9 and autoimmune diseases: A comprehensive review. Int. J. Mol. Sci. 23: 1337.
- Lepri G, Airò P, Distler O, Andréasson K, Braun-Moscovici Y, Hachulla E, Balbir-Gurman A, De Langhe E, Rednic S, Ingegnoli F (2023). Systemic sclerosis and primary biliary cholangitis: Longitudinal data to determine the outcomes. J. Scleroderma. Relat. Disord. 8: 210-220.
- Li S, Chen J, Yang X, Huang X, Wang H, Feng H (2023). Anti-dsDNA is associated with favorable prognosis in myasthenia gravis: A retrospective study. Acta Neurol. Scand. 2023: 1-11.
- Lin L, Hang H, Zhang J, Lu J, Chen D, Shi J (2022). Clinical significance of anti-SSA/Ro antibody in neuromyelitis optica spectrum disorders. Mult. Scler. Relat. Disord. 58: 103494.
- Liu J-J, Orlova N, Oakes B, Ma E, Spinner H, Baney K, Chuck J, Tan D, Knott G, Harrington L (2019). CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature. 566: 218-223.
- Liu R, Liang L, Freed E, Gill R (2021). Directed evolution of CRISPR/Cas systems for precise gene editing. Trends Biotechnol. 39: 262-273.
- Machado M V (2023). New developments in celiac disease treatment. Int. J. Mol. Sci. 24: 945.
- Maier L, Lowe C, Cooper J, Downes K, Anderson D, Severson C, Clark P, Healy B, Walker N, Aubin C (2009). IL2RA genetic heterogeneity in multiple sclerosis and type 1 diabetes susceptibility and soluble interleukin-2 receptor production. PLoS Genet. 5: e1000322.
- Makarova K, Wolf Y, Koonin E (2022). Evolutionary Classification of CRISPR‐Cas Systems. in: Rodolphe Barrangou, Erik J. Sontheimer and Marraffini, L. A. [Eds.]. CRISPR: Biology and Applications. 1st ed. ASM Press.
- Makarova K, Wolf Y, Iranzo J, Shmakov S, Alkhnbashi O, Brouns S, Charpentier E, Cheng D, Haft D, Horvath P (2020). Evolutionary classification of CRISPR–Cas systems: A burst of class 2 and derived variants. Nat. Rev. Microbiol. 18: 67-83.
- Malandrini S, Trimboli P, Guzzaloni G, Virili C, Lucchini B (2022). What about TSH and Anti-Thyroid antibodies in patients with autoimmune thyroiditis and celiac disease using a gluten-free diet? A systematic review. Nutrients. 14: 1681.
- Markovics A, Toth D, Glant T, Mikecz K (2020). Regulation of autoimmune arthritis by the SHP-1 tyrosine phosphatase. Arthritis. Res. Ther. 22: 160.
- Marks K, Rao D (2022). T peripheral helper cells in autoimmune diseases. Immunol. Rev. 307: 191-202.
- Marrack P, Kappler J, Kotzin B (2001). Autoimmune disease: Why and where it occurs. Nat. Med. 7: 899-905.
- Mašić M, Močić Pavić A, Gagro A, Balažin Vučetić A, Ožanić Bulić S, Mišak Z (2022). From Chilblains (Pernio) to coeliac disease—Should we still consider it random? Children. 9: 1972.
- Mubariki R, Vadasz Z (2022). The role of B cell metabolism in autoimmune diseases. Autoimmun. Rev. 21: 103116.
- Nadali J, Ghavampour N, Beiranvand F, Maleki Takhtegahi M, Heidari M E, Salarvand S, Arabzadeh T, Narimani Charan O (2023). Prevalence of depression and anxiety among myasthenia gravis (MG) patients: A systematic review and meta‐analysis. Brain Behav. 13: e2840.
- Nidhi S, Anand U, Oleksak P, Tripathi P, Lal J, Thomas G, Kuca K, Tripathi V (2021). Novel CRISPR–Cas systems: An updated review of the current achievements, applications, and future research perspectives. Int. J. Mol. Sci. 22: 3327.
- Olivieri B, Betterle C, Zanoni G (2021). Vaccinations and autoimmune diseases. Vaccines. 9: 815.
- Pavel-Dinu M, Borna S, Bacchetta R (2023). Rare immune diseases paving the road for genome editing-based precision medicine. Front. Genome Ed. 5: 1114996.
- Pinilla-Redondo R, Russel J, Mayo-Muñoz D, Shah S, Garrett R, Nesme J, Madsen J, Fineran P, Sørensen S (2022). CRISPR-Cas systems are widespread accessory elements across bacterial and archaeal plasmids. Nucleic Acids Res. 50: 4315-4328.
- Poniewierska-Baran A, Bochniak O, Warias P, Pawlik A (2023). Role of sirtuins in the pathogenesis of rheumatoid arthritis. Int. J. Mol. Sci. 24: 1532.
- Rasul M, Hussen B, Salihi A, Ismael B, Jalal P, Zanichelli A, Jamali E, Baniahmad A, Ghafouri-Fard S, Basiri A (2022). Strategies to overcome the main challenges of the use of CRISPR/Cas9 as a replacement for cancer therapy. Mol. Cancer. 21: 64.
- Ratiu J, Racine J, Hasham M, Wang Q, Branca J, Chapman H, Zhu J, Donghia N, Philip V, Schott W (2017). Genetic and small molecule disruption of the AID/RAD51 axis similarly protects nonobese diabetic mice from type 1 diabetes through expansion of regulatory B lymphocytes. J. Immunol. 198: 4255-4267.
- Rigopoulou E, Bogdanos D (2023). Role of autoantibodies in the clinical management of primary biliary cholangitis. World J. Gastroenterol. 29: 1795-1810.
- Roth-Carter Q, Godsel L, Koetsier J, Broussard J, Burks H, Fitz G, Huffine A, Amagai S, Lloyd S, Kweon J (2020). 225 desmoglein 1 deficiency in knockout mice impairs epidermal barrier formation and results in a psoriasis-like gene signature in E18. 5 embryos. J. Invest. Dermatol. 140: S26.
- Salman A, Kantor A, McClements M, Marfany G, Trigueros S, MacLaren R (2022). Non-viral delivery of CRISPR/Cas cargo to the retina using nanoparticles: Current possibilities, challenges, and limitations. Pharmaceutics. 14: 1842.
- Satomura A, Nishioka R, Mori H, Sato K, Kuroda K, Ueda M (2017). Precise genome-wide base editing by the CRISPR Nickase system in yeast. Sci. Rep. 7: 2095.
- Schultz-Bergin M (2018). Is CRISPR an ethical game changer? J. Agric. Environ. 31: 219-238.
- Sharma G, Sharma A, Bhattacharya M, Lee S-S, Chakraborty C (2021). CRISPR-Cas9: A preclinical and clinical perspective for the treatment of human diseases. Mol. Ther. 29: 571-586.
- Shinwari Z, Tanveer F, Khalil A (2018). Ethical issues regarding CRISPR mediated genome editing. Curr. Issues Mol. Biol. 26: 103-110.
- Shmakova A, Shmakova O, Karpukhina A, Vassetzky Y (2022). CRISPR/Cas: History and perspectives. Russ. J. Dev. Biol. 53: 272-282.
- Siddiq A, Naveed A, Ghaffar N, Aamir M, Ahmed N (2023). Association of pro-inflammatory cytokines with vitamin D in Hashimoto’s thyroid autoimmune disease. Medicina. 59: 853.
- Sivakumar A, Cherqui S (2022). Advantages and limitations of gene therapy and gene editing for Friedreich’s ataxia. Front. Genome Ed. 4: 903139.
- Smirnikhina S, Zaynitdinova M, Sergeeva V, Lavrov A (2022). Improving homology-directed repair in genome editing experiments by influencing the cell cycle. Int. J. Mol. Sci. 23: 5992.
- Song B, Yang S, Hwang G-H, Yu J, Bae S (2021). Analysis of NHEJ-based DNA repair after CRISPR-mediated DNA cleavage. Int. J. Mol. Sci. 22: 6397.
- Suwanchote S, Rachayon M, Rodsaward P, Wongpiyabovorn J, Deekajorndech T, Wright H, Edwards S, Beresford M, Rerknimitr P, Chiewchengchol D (2018). Anti-neutrophil cytoplasmic antibodies and their clinical significance. Clin. Rheumatol. 37: 875-884.
- Szabó G, Debreceni I, Tarr T, Soltész P, Østerud B, Kappelmayer J (2021). Anti-β2-glycoprotein I autoantibodies influence thrombin generation parameters via various mechanisms. Thromb. Res. 197: 124-131.
- Tan C, Soh N, Chang H C, Yu V (2023). p62/SQSTM1 in liver diseases: the usual suspect with multifarious identities. FEBS J. 290: 892-912.
- Tian Y, Liu T, Liu C, Xu Q, Liu Q (2022). Pathogen detection strategy based on CRISPR. Microchem. J. 174: 107036.
- Uddin F, Rudin C, Sen T (2020). CRISPR gene therapy: Applications, limitations, and implications for the future. Front. Oncol. 10: 1387.
- Ustiugova A, Ekaterina D, Nataliya M, Alexey D, Dmitry K, Marina A (2023). CRISPR/Cas9 genome editing demonstrates functionality of the autoimmunity-associated SNP rs12946510. Biochim. Biophys. Acta Mol. Basis Dis. 1869: 166599.
- Vockley J, Aartsma‐Rus A, Cohen J, Cowsert L, Howell R, Yu T, Wasserstein M, Defay T (2023). Whole‐genome sequencing holds the key to the success of gene‐targeted therapies. Am. J. Med. Genet. C. Semin. Med. Genet. 193: 19-29.
- Voss K, Sewell A, Krystofiak E, Gibson-Corley K, Young A, Basham J, Sugiura A, Arner E, Beavers W, Kunkle D (2023). Elevated transferrin receptor impairs T cell metabolism and function in systemic lupus erythematosus. Sci. Immunol. 8: eabq0178.
- Xiao Z, Miller J, Zheng S (2021). An updated advance of autoantibodies in autoimmune diseases. Autoimmun. Rev. 20: 102743.
- Yamamoto T, Matsushita S, Endo D, Shimada A, Dohi S, Kajimoto K, Yokoyama Y, Sato Y, Machida Y, Asai T (2023). Management of cardiovascular surgery in patients with systemic lupus erythematosus including thromboembolism and multiple organ failure prevention: A retrospective observational study. Medicine. 102: e32979.
- Yang Y, Xu J, Ge S, Lai L (2021). CRISPR/Cas: Advances, limitations, and applications for precision cancer research. Front. Med. 8: 649896.
- Yoshii I, Chijiwa T, Sawada N (2023). The influence of anti-citrullinated polypeptide antibodies on bone mineral density decrease and incident major osteoporotic fractures in patients with rheumatoid arthritis: A retrospective case-control study. Osteology. 3: 47-60.
- Yoshimi K, Oka Y, Miyasaka Y, Kotani Y, Yasumura M, Uno Y, Hattori K, Tanigawa A, Sato M, Oya M (2021). Combi-CRISPR: combination of NHEJ and HDR provides efficient and precise plasmid-based knock-ins in mice and rats. Hum. Genet. 140: 277-287.
- Yu Z, Yunusbaev U, Fritz A, Tilley M, Akhunova A, Trick H, Akhunov E (2023). CRISPR-based editing of the ω-and γ-gliadin gene clusters reduces wheat immunoreactivity without affecting grain protein quality. Plant Biotechnol. J. 22: 892-903.
- Zhang B (2021). CRISPR/Cas gene therapy. J. Cell. Physiol. 236: 2459-2481.
- Zhang S, Shen J, Li D, Cheng Y (2021). Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics. 11: 614-648.
- Zhao Z, Xue J, Zhuo Z, Zhong W, Liu H (2022). The association of IL7R rs6897932 with risk of Multiple Sclerosis in Southern Chinese. Neuropsychiatr. Dis. Treat. 18: 1855-1859.
- Zhu Q, Wang J, Zhang L, Bian W, Lin M, Xu X, Zhou X (2019). LCK rs10914542-G allele associates with type 1 diabetes in children via T cell hyporesponsiveness. Pediatr. Res. 86: 311-315.
- Zhu W, Li K, Cui T, Yan Y (2023). Detection of anti-ganglioside antibodies in Guillain-Barré syndrome. Ann. Transl. Med. 11: 289.
- Zhuo C, Zhang J, Lee J-H, Jiao J, Cheng D, Liu L, Kim H-W, Tao Y, Li M (2021). Spatiotemporal control of CRISPR/Cas9 gene editing. Signal Transduct. Target Ther. 6: 238.
- Zian Z, Mechita M, Hamdouch K, Maamar M, Barakat A, Nourouti N, El Aouad R, Valdivia M, Arji N (2020). Proteomics characterization of CENP-B epitope in Moroccan scleroderma patients with anti-centromere autoantibodies. Immunol. Lett. 221: 1-5.